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Overview

1) Gaussian random fields in cosmology

2) Gibbs sampling for high-dimensional problems

3) Gaussian constrained realisations

4) Missing data and the power spectrum



  

Gaussian random fields in cosmology



  

Gaussian random fields in cosmology
Many key observables in cosmology probe the distribution of matter 
(e.g. CDM, baryons, radiation) on large scales

● Initial conditions set by seed quantum fluctuations during inflation

→ Fluctuations random, statistically homogeneous, Gaussian

● Physical processes (e.g. gravitational collapse, photon free-
streaming) evolve fields from these initial conditions

  → On sufficiently large scales, evolution eqns. can be linearised, 
  so the fields remain ~Gaussian
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Gaussian random fields in cosmology
Many key observables in cosmology probe the distribution of matter 
(e.g. CDM, baryons, radiation) on large scales

● Initial conditions set by seed quantum fluctuations during inflation

→ Fluctuations random, statistically homogeneous, Gaussian

● Physical processes (e.g. gravitational collapse, photon free-
streaming) evolve fields from these initial conditions

  → On sufficiently large scales, evolution eqns. can be linearised, 
  so the fields remain ~Gaussian

Key task in cosmology: Measuring the power spectrum 
(Fourier-space covariance) of approx. Gaussian random fields



  

Cosmic Microwave Background
Analysis of fluctuations in the CMB radiation:

● Make map of fluctuations in CMB temperature on the sky

● Transform into spherical harmonic (l,m) basis

● Calculate power spectrum (variance as a function of l)



  

Cosmic Microwave Background
Analysis of fluctuations in the CMB radiation:

● Make map of fluctuations in CMB temperature on the sky

● Transform into spherical harmonic (l,m) basis

● Calculate power spectrum (variance as a function of l)

Planck Collab. 
(2018)



  

Cosmic Microwave Background
Planck CMB data are microwave maps over the whole sky in 
multiple frequency bands contaminated by foreground emission.
● 9x frequency bands, 3x polarisations
● Up to 50 million pixels per band per polarisation

Planck Collaboration (2018)



  

Cosmic Microwave Background
How to separate the foregrounds from the primary CMB?
● Simple freq.-dependent parametric model for each foreground
● Foreground and CMB parameters vary from pixel to pixel

Planck Collaboration (2018)



  

CMB data model

Generic data model:

 

Amplitude 
coefficient

Noise

Spectral modelSum over 
components

Data

Spatial basis 
function



  

CMB data model

Generic data model:

 

Typical component has the following parameters (per pixel):
● 1 amplitude per polarisation
● 1–2 spectral parameters (across all polarisations)
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CMB data model

Generic data model:

 

Typical component has the following parameters (per pixel):
● 1 amplitude per polarisation
● 1–2 spectral parameters (across all polarisations)

Planck analysis: 15 parameters per pixel!
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Cosmic Microwave Background
One of the major successes of Planck has been creating maps of the 
foreground components themselves

Planck Collaboration (2015)



  

CMB data model

How to estimate the posterior of ~15 parameters/px for 
over ~1 million pixels!?

● Rely on independence of noise between pixels?
Only approximately true for Planck

● CMB prior is in spherical harmonic space

Need prior to regularise in case of missing data, but 
couples pixels at large separations!



  

CMB data model

How to estimate the posterior of ~15 parameters/px for 
over ~1 million pixels!?

● Rely on independence of noise between pixels?
Only approximately true for Planck

● CMB prior is in spherical harmonic space

Need prior to regularise in case of missing data, but 
couples pixels at large separations!

This is not an embarrassingly parallel problem!

Need a clever way of estimating high-dimensional posterior 
with non-trivial correlations between parameters



  

Gibbs Sampling



  

 

Sample from joint posterior by iteratively sampling from 
conditional distributions

Useful if conditionals are simple → use direct sampling
  - Sampling from (e.g.) multivariate Gaussian is “easy”!
  - Sampling from general m.v. dists can be very hard
 

P(a,b|d) ~ 
    Iterate:

 a ← P(a|b,d)
 b ← P(b|a,d)

Gibbs sampling
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Amplitudes of components

Amplitude covariance

Spectral parameters

Spatial template params

Iterations for our problem:

Data model:

Gibbs sampling



  

Limitations of Gibbs sampling

● Only efficient if conditional distributions are tractable!
● Avoid sampling correlated parameters in separate steps 

(otherwise MCMC samples are highly correlated)
● Iterative methods can take a long time to converge if 

starting point is bad
● Generally much heavier than cheating (i.e. using 

approximate methods)



  

Constrained Realisations



  

Conditional dist. for all amplitude parameters can be written 
as a single multivariate Gaussian

Sample directly from this by solving linear system

Prior info included by conditioning on signal covariance
    → Constrained realisation: fills in missing data etc.

(where U = BGT projects amplitudes → map)

Constrained realisations
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Constrained realisations



  

Posterior for amplitude parameters

Given (incomplete) data + expected signal and noise covariance, 
the amplitude parameters follow this posterior pdf:



  

Posterior for amplitude parameters

Given (incomplete) data + expected signal and noise covariance, 
the amplitude parameters follow this posterior pdf:

The max. likelihood solution is the Wiener filter:



  

CR equations

The Wiener filter solution gives us the mean of the target 
Gaussian distribution:

We can draw a sample x from a multivariate Gaussian by 
solving the following linear system:

where:

 

This can be solved for millions of x parameters (e.g using CG)

White noise 
vectors
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Example application:
21cm intensity mapping



  

21cm intensity mapping experiments
Make 3D maps of the matter distribution using spectral line 
emission from galaxies etc.

Kovetz+ (2017)



  

21cm intensity mapping experiments
Intensity mapping is a very high dynamic range problem. 
Foregrounds are ~105-106 larger than the cosmic signal!

Foregrounds are inherently spectrally smooth, but radio telescopes 
have a highly chromatic response → imposes spectral structure

Cosmic Visions 21cm 
Collab. (2018)



  

21cm intensity mapping experiments
(QMUL just joined the HERA collaboration – ask me for details!)

HERA Collaboration / K. Rosie



  

Masked data
There is always a mask, due to RFI flags and band edges.
● Sharp features break orthonormality of the Fourier basis
● This induces “ringing” and mode-coupling

→ Couples bright foregrounds into signal-dominated modes!
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Constrained realizations

Data model:
● Foreground model: 25-order polynomial
● Signal model: Gaussian-distributed random number in each 

pixel (with some prior on its power spectrum)
● Noise: White noise (uncorrelated Gaussian)



  

Constrained realizations

● Inspect leakage of bright foreground modes outside of the 
“smooth” (low Fourier mode) region

Green: Severe ringing caused by mask

Red: Constrained realisation inside mask



  

Summary

● Lots of ~Gaussian random fields in cosmology

● Gibbs sampling: Split-up posterior in a clever way to make 
high-dimensional problems more tractable

● Gaussian constrained realisations: elegant solution to 
estimating power spectra in presence of missing data
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