

What can we do with radio galaxies from surveys?

Martin Hardcastle NAM, July 2015

RLAGN + RQAGN are different!

Constructing LFs makes sense for

Optical quasar luminosity function (Richards +06)

(luminosity is the product of a RQAGN: one parameter, average over stochasticity)

RLAGN have life cycles!

For one night only...

University of Hertfordshire

Radio power doesn't trace jet power

Simulated tracks in the P-D diagram for sources with Q = 10^{45} erg/s in a range of environments (red = rich, green = medium, blue = poor).

Radiative losses are taken into account. Adapted from H+K 14

University of Hertfordshire

So you can't do this:

Feedback, or, why we care

Radio-loud AGN feedback

RL AGN: energy input understood

(Hardcastle + Krause 13, 14)... but RL AGN populations aren't. (For RQAGN it is arguably the other way round.) University*of* Hertfordshire

RG population studies

An + Baan 12

Note *really* small sample sizes!

Listing by Icons

These thimbinal images are arranged in order of increasing radio power. Each image has been blurred so the beamwidth is 1/20 of the angular size, this allows the structures of objects with very different angular sizes to be easily compared. Click on a thumbasil to go to the individual *Atlas* page.

6AR

Small samples

- Really hard to get well-imaged, identified, complete samples of RLAGN!
- (Those that exist have whole websites dedicated to them)

- 1) Sensitivity obvious
- 2) Fidelity needs some explaining?

ning?

- 1) Sensitivity obvious
- 2) Fidelity needs some

University*of* Hertfordshire

u,v (lambda)

Fidelity in practice

LOFAR FIRST (VLA B) NVSS (VLA D)

Fidelity

- LOFAR, MeerKAT and SKA-1 will all have this ability to map all structures in one shot
- GMRT has it to a lesser extent
- VLA does not have it at all
 - VLASS limited in value for extended sources though still important for high resolution / compact objects

LOFAR

FRII sources from SKADS simulations (colour = z, dark blue = 0, red = 6)

VLASS (S-band B-config)

FRII sources from SKADS simulations (colour = z, dark blue = 0, red = 6)

SKA-1-mid

FRII sources from SKADS simulations (colour = z, dark blue = 0, red = 6)

University*of* Hertfordshire

LOFAR results

(Some) well-resolved bright sources in H-ATLAS NGP NW – 8h observation

To get from here to physics:

- Need:
 - IDs and redshifts!
 - Physical sizes, shapes
 - Spectra resolved and unresolved
 - Polarization
- Then in principle can solve for
 - projection angle!
 - jet power
 - age
 - environment...

Methods

- Numerical modelling taking into account:
 - realistic environments
 - realistic jet and lobe densities
 - magnetic field evolution
 - relativity
 - cosmic ray transport and loss
- (see Hardcastle & Krause 2013, 2014; English+ 201?)

×...

Numerical modelling

Evolution of radio power

Simulated tracks in the P-D diagram for sources with Q = 10^{45} erg/s in a range of environments (red = rich, green = medium, blue = poor).

Radiative losses are taken into account. Adapted from H+K 14

University of Hertfordshire

Broad-band spectra: ageing

Lines denote different simulation runs w/ same jet power: red, green, blue different slopes of cluster density profile (red flat, blue steep): dashed, solid, dotted different core radii (dashed large, dotted small)

Depolarization

Beaming and projection angle

Where from here?

- Observations:
 - need large samples of *identified* RLAGN w/ highfidelity imaging
 - spectral indices (maps for resolved sources)
 - polarization? (Not yet for LOFAR)
- Modelling:
 - cosmic ray transport crucial for spectra
 - calibration: compare with deep multi-waveband images of individual objects

Where from here?

- Then:
 - grids of numerical models
 - grids of simulated images
 - extract key parameters
 - compare with images
 - marginalize over nuisance parameters (angle etc)
 - Bayesian estimate of interesting parameters (jet power etc)
 - jet kinetic luminosity function!