

BINGO BAOs from Integrated Neutral Gas Observations

M.-A. Bigot-Sazy for the BINGO collaboration

National Astronomy Meeting 2015

BINGO telescope

Horn array (detectors)

Credit: Bruno Maffei, Adrian Galtress, Clive Dickinson

JBCA Manchester (UK)

Richard Battye Marie-Anne Bigot-Sazy Ian Browne Richard Davis Peter Dewdney Clive Dickinson Adrian Galtress Keith Grainge Yin-Zhe Ma Bruno Maffei Fabio Noviello Lucas Olivari Peter Wilkinson

Sao Paolo (Brazil)

Elcio Abdalla Raul Abramo Marcos Lima

Uruguay

Manuel Caldas Emilio Falco Ana Mosquera Gonzalo Tancredi

INPE (Brazil)

Thryso Villela Alex Wueunsche

Portsmouth University (UK)

Alkistis Portsidou

UCL London (UK)

Filipe Abdalla

ETH Zurich (Switzerland)

Adam Amara Christian Monstein Alex Refregier

BINGO BAOs from Integrated Neutral Gas Observations

Static radio telescope

- 2 mirrors compact range design with an offset focus
- Crossed-dragone design (2 mirrors of

similar size)

- Compact system
- Excellent beam
- Low sidelobes
- Excellent cross-polarization response
- Favoured design for many CMB polarization experiments
- Design
 - feed horn array with 70 receivers
 - 15 deg x 200 deg field of view

BINGO BAOs from Integrated Neutral Gas Observations

Instrument parameters

Frequency range 0.96 GHz to 1.26 GHz (z =0.13-0.48) I MHz frequency channel FHWM 40 arcmin at IGHz Survey Design (drift scan) Observation time: 2 years of integration time Declination: -5 deg Area: 15 deg x 200 deg

Guiding principle : simple design

Location Uruguay (Castrillon Quarry

an abandoned gold mine near Minas Corrales)

A clear view of the South Galactic Pole for the reference feed horns

- A low RFI environment.
- A topography that can easily support the two mirror design.

Credit: Bruno Maffei

Pseudo correlation receiver

No cryogenics: Tsys approx 50 K rms noise level = 87 microK

Conical corrugated feedhorns

I.7 m in diameter and 4.2 m in
length → large horns
Challenge: low cost and low weight
Idea: low-cost metalized foam sheets
(lan Browne)

Construction of a 2 m horn

Credit: Ian Browne

Number of feeds: 70 (dual polarization)

Performance of the BINGO telescope

BAO "Hubble diagram" for the volume averaged distance

• Detection of BAOs at ~5 σ - Measurement of acoustic scale to $\delta k_A/k_A$ ~ 2.2%

Complementary in terms of redshift range with optic surveys and add to the possibility of measuring the cosmic distance scale only from BAOs

Challenges with intensity mapping data

foreground component separation (intensity up to five orders of magnitude higher than the HI signal)

Brightness temperature of the HI signal T \sim 100 microK Galactic Synchrotron emission T = 1 K (fluctuations 100 mK)

noise

- uncorrelated noise white noise
- correlated noise in time and frequency I/f noise
- atmospheric I/f noise
- systematics effects
 - sidelobes: near, intermediate, far (mode mixing)
 - bandpass calibration
 - cross polarisation
 - beam ellipticity

Careful design of the instrument and accurate calibration otherwise

- systematic effects that can result in leakage of the continuum background into the HI signal

- addition of spectral features in the sky spectrum

Synchrotron emission

mK

1282.90

Simulation of a single dish experiment

Foreground component separation

Property of the Galactic foreground

Assumption: perfect calibration

- Spectrally smooth

Investigation of new methods using frequency and spatial information (Olivari et al., in prep.) see Poster Lucas Olivari

Conclusion

BINGO BAOs from Integrated Neutral Gas Observations

- with PCA, it is feasible to extract the HI signal from a highly contaminated foreground map (Alonso et al. 2014)
 - ~5% of the cosmological signal but a modification of the global shape of the power spectrum will not modify the BAOs wiggles
- investigate more complex foreground cleaning methods
 - critical aspects of the calibration: the beam response and the instrument bandpass

Project status

- Receiver prototyping on-going
 - Already in the testing phase
- Basic mechanical design ready
 - Foam metalised sheets easy to make and seem to work
- FAPESP proposal being evaluated Estimated total cost ≈ 3M US dollars
- If funding appears in 2015, construction 2016, first science observations in 2017

Site selection

Quary Castrillon in Northern Uruguay

stable walls in order to accommodate the telescope correct orientation

RFI testing

led by Christian Monstein (ETH, Zurich)

seven sites were visited

- two frequency scans made
- a first one in absolute power from 10 MHz to 2700 MHz measured with an omnidirectional antenna
- a second narrow band one going from 800 MHz to 1600 MHz covering the BINGO band of interest.

Gold mine Castrillon in Minas Corrales

M.-A. Bigot-Sazy - BINGO collaboration

BINGO horns

Conical corrugated feedhorns

large feed horns : 1.7 m in diameter and 4.2 m in length

Idea : low-cost metalized foam sheets (lan Brown)

Tests

- Tests of the electrical properties of the horn performed with the $\ensuremath{\mathsf{VNA}}$
- Polar diagram measurements

Results

- main beam with the predicted FWHM and of Gaussian shape, at least down to -30dB
- sidelobes and back lobe are around -40 dB
- on-axis polarization purity is better than -25 dB

Foam plate manufacturing technique works!!

2 m horn with 78 sheets of 25 mm thick foam

M.-A. Bigot-Sazy - BINGO collaboration

BINGO constraints on Dark Energy

