CMB lensing – radio galaxy cross-correlation

Rupert Allison University of Oxford 6th July 2015

arXiv: 1502.06456

Collaborators: Sam Lindsay, Blake Sherwin, Matt Jarvis, ACT Collaboration

Outline

- Motivation, science to extract
- Physics of cross-correlation
- **CMB lensing** from ACT and ACTPol
- FIRST radio survey: AGN sample
- **Results** and future prospects

Motivation

CMB lensing – radio galaxy cross-correlation

- Excellent overlap between source kernels
- Constrain the bias of AGN
- Calibration of auto-correlation, extraction of cosmology
- Characterize mass of the AGN haloes
- Multi-tracer technique
- Robust to systematics

- Radio galaxies are biased tracers of the underlying dark matter density field
- CMB lensing also due to density fluctuations of the dark matter

- Radio galaxies are biased tracers of the underlying dark matter density field
- CMB lensing also due to density fluctuations of the dark matter

- Radio galaxies are biased tracers of the underlying dark matter density field
- CMB lensing also due to density fluctuations of the dark matter •

Window functions

CMB lensing from ACT

Atacama Cosmology Telescope

- Cerro Toco, Northern Chile
- 6m dish CMB telescope
- ACTPol polarimeter fitted 2013
- 90,150 GHz
- First T and P data in Naess et al. (2014)
- Cross-correlation of lensing with CIB (Van Engelen et al. 2014), detection of CMB lensing 1-halo term (Madhavacheril et al. 2015)

Photo: Lyman Page

- 10,000 sq. deg covered over 20 years (1993-2011), final catalogue 2015.
- 1.4 GHz observing frequency
- 95% complete at 2 mJy
- Around 10⁶ sources detected, 720,000 are reliable and have $F_{1.4 \text{ GHz}} > 1 \text{ mJy}$
- Low-redshift sources (z < 0.2): dominated by star-forming galaxies
- High-redshift sources (z>0.2): dominated by synchrotron-emitting **AGN**
- Optical cross-matching with SDSS to remove most of the SFGs
- Final sample of sources used in analysis: **36,000 sources over 500 sq. deg** of ACT and ACTPol lensing coverage

Overlap between ACT, ACTPol and FIRST

Results

Dark solid: best-fit cross-spectrum

Light solid: contribution to cross-spectrum from z > 1.5 sources

 4.5σ detection of the cross-spectrum, corresponding to $\sim 2-60\,$ Mpc fluctuations at an effective redshift of $z_{\rm eff}=1.5$

Results

Future science with $g, \kappa_{cmb}, \kappa_g$

- The auto- and cross-spectra provide complementary information about the large-scale structure they probe.
- Cross-spectrum robust to systematic biases particular to each data set use as a calibrator
- Kirk et al. (2015) show inclusion of cross-spectra can significantly improve cosmological constraints (probing different structure, suppressing astrophysical degeneracies).
- Next-generation CMB experiments in combination with the SKA will provide sub-percent constraints on the amplitude for WL and LSS cross-correlations with CMB lensing

Thanks for listening! Questions?

Bonus slides

Systematics, modeling limitations, z_{eff}

- Previous work shows high-redshift underlying dn/dz most uncertain (e.g. Jarvis & Rawlings 2003, Jarvis+ 2001, Wall+ 2005, Rigby 2011). Perturbing dndz here, only see a 0.25σ shift – expect this to be a subdominant bias.
- Choice of cosmology fixed to Planck bf; error contribution from model uncertainty negligible.
 - Astrophysical contaminants:
 IR sources, SZ clusters, Galactic cirrus. Ref. to Sherwin et al. (2012).
 Subtraction of bright radio sources from primary CMB prior to lensing reconstruction.

Figure 9. Cross-power spectrum kernel $C_l^{\kappa g}(z) = W_{\kappa}(z)W_g(z)P(l/\chi(z);z)$, demonstrating the scale-dependent sensitivity of the cross-spectrum to source redshift. At l = 200, where the signal-to-noise peaks, the mean redshift of the kernel is $\int z C_{200}^{\kappa g}(z)dz/C_{200}^{\kappa g} = 1.5$, which we adopt as the effective redshift $z_{\rm eff}$ of the radio source bias measurement. The spread in the kernel reflects sensitivity to a wide range of redshift. See Section 2.3 for details.

Pipeline verification

ACT \times FIRST, ACTPol \times FIRST

Stats

	Α	S/N	$\chi^2~(u)$	PTE
ACT ACTPol	$1.22 \pm 0.31 \\ 0.85 \pm 0.36$	$\begin{array}{c} 3.9 \\ 2.4 \end{array}$	$3.2 (9) \\ 7.2 (9)$	$\begin{array}{c} 0.96 \\ 0.62 \end{array}$
Comb.	1.06 ± 0.24	4.5	11.0 (19)	0.92

Table 2. Results showing the bias amplitude A relative to the fiducial model of Fig. 3. We also quote the signal-to-noise ratio S/N, Chi-squared values at the best-fit χ^2 , the number of degrees of freedom ν and the probability to exceed this χ^2 (PTE) under the assumption of the best-fitting model.