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Global 21-cm signal, summarised by
‘turning points’
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Figure adapted from Pritchard & Loeb (2010)
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Turning point B

disallowed in the absence
of exotic physics
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Position of turning point B = constraints on global Lyman-alpha background
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Turning point C
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Position of turning point C = constraints on global heating rate (X-ray background)
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The Dark Ages Radio Explorer

* Proposed:  Current status:

— Global 21-cm mission. — An initial field test of a DARE-

— Low lunar orbit, collects like instrument in March 2012
science data over the far side showed effects of RFl and
at 40-120 MHz, shadowed ionosphere.
from RFI from Earth. — We have deployed a next-

— Deemed selectable in the last generation prototype with an
Explorer round, was updated antenna and system,
reproposed as a Small ready to test our new
Explorer (SMEX) in December. calibration approach, and

study the ionosphere and low-
frequency

foregrounds

in more detail.
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Multiple strong foregrounds
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Spatial structure of foregrounds

Diffuse foregrounds at 80 MHz
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Sky model of de
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] et al. (2008)
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Bayesian inference framework

Approach: parameterize 21-cm signal,
foregrounds, instrument, ionosphere

etc. and fit them all simultaneously Can be computed given our model at

a particular set of parameter values, ©
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Higher order FGs make the signal
harder to extract (but not impossible)
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Effects of complex foregrounds
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Other signal parametrizations may
match the signal shape more easily
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Physical parameter constraints
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Conclusions

Turning points encode robust information
about IGM properties...

...but their positions may be biased unless the
model can capture the true shape of the
signal.

Can test for this, and for foreground
complexity, using Bayesian model selection.

Nested sampling seems to work well for this,
but we need fast, scalable codes.



